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A new efticient algorithm for computing the Voronoi tessellation in three dimensions is 
presented. The Voronoi tessellation is obtained by constructing Delaunay tetrahedra. The 
complete set of these tetrahedra corresponds to that of’ a single Voronoi polyhedron. 

1. INTRODUCTION 

The need for constructing the Voronoi tessellation has increased recently, mainly 
for the purpose of describing, analyzing, and modelling the spatial patterns of points 
(atoms, animals, houses, cities, stars, and so on) [ 11. Accordingly, an efficient 
algorithm is required for computing the Voronoi tessellation of a given set of points 
(hereafter, we use the term “atom” in place of “point” to avoid confusion). Although 
many authors might have an imp~icitiy devised method for constructing Voronoi 
polygons or Voronoi polyhedra, it seems that the algorithms which have been 
explicitly published so far are rather few. As far as we know, the only published 
algorithms are by Green and Sibson [2] for Voronoi polygons and by Brostow, 
Dussault, and Fox [3 1 and Finney [4] for Voronoi polyhedra. Recently, Bowyer [5 ] 
and Watson [6] presented algorithms for computing k-dimensional Voronoi 
tessellations (k = 2, 3,4,...). The purpose of this paper is to give a new effkient 
method of Voronoi tessellation in three”dimensiona1 space, which uses a different 
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algorithm from those mentioned above (Tanemura, Hiwatari, Matsuda. Ogawa. 
Ogita, and Ueda [7]). 

In Section 2, some definitions are given. In Section 3, the main part of the 
algorithm is outlined. Section 4 elucidates in detail one of the steps of the algorithm. 
Proofs of theorems are given in Section 5. In Section 6, some technical details of 
programming the algorithm are presented. In Section 7. efficiency of the algorithm 
and comparisons with other algorithms are given. Finally, Section 8 gives some 
possible improvements and a generalization. 

2. SOME DEFINITIONS 

Let N atoms be distributed in a box V of finite size. In the following, we assume 
that this box is a cube of side length L (] I’] =L3). Assume that the whole three- 
dimensional space is covered, without any gap or any overlap, by replicas of this box 
so that each atom in the original box I’ is periodically located in each of three 
directions outside the box with period L. 

Let x,, xZ...., x,,, be the coordinates of atoms in the original box. Denote all of the 
periodic images of each xi representatively by Xi (i = I,..., N). Then, the I/oronoi 
region 17, of atom i inside V is defined by the following set of points x of the space: 

ni = {x ] d(x, xi) ( d(x, xj) and d(x, x,) < d(x, X,), 

for allj # i and for all k. respectively}, (11 

where d(x, y) is the Euclidean distance between x and y. In other words, ZZi is the set 
of points which is nearer to xi than any other xj’s and Xk’s, Note that each region 17, 
is the intersection of the open half-spaces bounded by the perpendicular bisectors of 
the segments joining xi with each of the other x,‘s and X,‘s. Hence, Voronoi regions 
are convex polyhedra with finite size according to definition (1). Each 17, is called a 
Voronoi polyhedron. This is a generalized concept of a Wigner-Seitz cell which is 
assigned to each atom in a regular lattice and which is principally used in solid state 
physics. 

The above definition (1) of a Voronoi polyhedron is slightly different from that of 
Rogers [8] because the periodic boundary conditions are imposed in our formulation. 
The set of l7;s (i= l,..., N) and its periodic repetitions constitute a tessellation of 
space, i.e., a Voronoi tessellation, which is unique for a given configuration of atoms 
inside V. 

A pair of atoms i and j whose Voronoi polyhedra 17, and II, have a face in 
common is called a contiguous pair and a member of the pair is said to be contiguous 
to the other member. By joining all of the contiguous pairs of atoms, we obtain a 
network, In this network, a set of four atoms which are contiguous with one another 
forms a tetrahedron. The set of tetrahedra constructed in such a manner constitutes a 
new tessellation, which is called the &?launay tessellation. These two tessellations. 
Voronoi and Delaunay, are dual to each other. We call the tetrahedron in the 
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Delaunay tessellation the De&nay tetrahedron and often abbreviate it as DT. For 
each DT, let us describe a circumsphere, i.e., a circumscribing sphere. 

Remark 1. The circumcenter, i.e., the center of the circumsphere, of a DT is a 
vertex of the Voronoi tessellation. 

From the definition of the Voronoi tessellation, the four atoms which form the DT 
are equidistant from the vertex concerned, and thus Remark 1 follows. 

Remark 2 (Contiguity Condition). The circumspher~ of a DT is empfv, that is, 
there is no atom inside this sphere. 

If the fifth atom exists inside the sphere, it is nearer to the circumcenter than the 
four atoms on the surface of the sphere. Therefore, the center cannot be the common 
vertex of the Voronoi polyhedra of the four atoms. Thus, Remark 1 leads to 
Remark 2. 

At a vertex of the Voronoi tessellation, generally, four polyhedra meet. However, if 
a vertex happens to have five or more polyhedra in common, the vertex is said to be 
degenerate. Obvious degenerate cases can be found for typical crystalline lattice 
structures. Although the algorithm presented in this paper works for both degenerate 
and nondegenerate cases, we assume here the degeneracy is absent in the 
con~gurations with which we are concerned. This point will be discussed in Section 6. 

Finally, let us introduce a symbol {i,j, k,...} in order to indicate a set of atoms 
i,j,k ,..., and geometrical objects formed by these atoms. For example, the symbol 
(i,jl represents the pair of atoms i and j, the segment which joins i andj, and the line 
which passes through i and j. The symbol (i, j, k} indicates the set of three atoms i,j, 
and k, the triangle which is obtained by connecting i,j, and k by segments, the face 
surrounded by this triangle, and the plane which contains this face. The meaning of 
the symbol will be indicated on each occasion by putting a term in front of the 
symbol. 

3. ALGORITHM 

The main part of our algorithm for computing the Voronoi tessellation is 
composed of the procedure for constructing a singIe Voronoi polyhedron. Voronoi 
tessellation is obtained by the repeated use of this procedure for all of the atoms 
i= 1 ,..., N. Our procedure of constructing ZZ,, i.e., Voronoi polyhedron of atom i, 
consists essentially of obtaining all DT’s each of which has the atom i as a common 
vertex. Denote such a set of DT’s by Ti and call it the complete set of DT’s for atom 
i. From the arguments in Section 2, obtaining Ti is equivalent to obtaining ni. Note 
that Ti constitutes a polyhedron, not necessarily convex, whose vertices are atoms. It 
will be referred to as a contiguity polyhedron of atom i. Let Ci be a set of such vertex 
atoms of the polyhedron. Each member of Ci corresponds to a face of ni, the face 
being the perpendicular bisector of that member of Ci and the atom i. The face of n, 
which corresponds to a certain atom, say j, can be determined by DT’s of r, which 
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FIG. 1. Topological illustration of a portion of If,. The atom j which is contiguous to the central 
atom i is represented by a closed circle. The circle also represents the contiguous pair (i. jt. The polygon 
in the central part indicates the face which is produced by the pair (i,j}. Open circles are the atoms 
which are contiguous to both atoms i and j. Dotted triangles represent DT’s. 

have the atoms i and j as common vertices. Figure 1 is a two-dimensional represen- 
tation of a three-dimensional structure. Note that the atom j is “above” the atom i 
(out of the page). The vertices of ni are the circumcenters of the respective member 
of Ti. As can be seen from Fig. 1, other geometries of ZZi, edges for instance, also can 
be determined from the connectivity among the elements of r,. Therefore. the 
efficiency of the algorithm depends on how quickly we can search T, and the connec- 
tivity in Ti. 

Let S, be a set of atoms surrounding atom i and let us assume Si includes C,, i.e., 
S, 13 Ci. Note that Si does not include the atom i itself. Under the assumption that S, 
is already known (the method of determining S, will be given in Section 6), our task 
is to find the contiguous set of atoms Ci from the set S,. The algorithm for obtaining 
zzi follows. 

Step 1. Find the atom i, which is nearest to the atom i. Then i, is contiguous to i 
(Theorem 1) and is a member of C,. Set C, t i, . 

Step 2. Consider a set of triplets (i, i, ,j}, wherej E S, and j # i, . Find the atom 
j = i, so that the triangle {i, i,, i2} has the minimum circumradius, i.e., the radius of 
the circumscribing circle of the triangle, in the set of triangles considered above. Then 
the triangle (i, i,, i2} constitutes one of the faces of a DT (Theorem 2). Set 
Ci+izV Ci. 



SQ 3, Consider a set of quartettes {i, i, , i,, ji, where j E Si and j # i, , i,, Find 
the atom j=: i, so that the tetrahedron {i, i,, i,, i3{ has the minimum circumradius, 
i.e., the radius of the circumscribing sphere of the tetrahedron, in the set of tetrahedra 
considered above. Then the tetrahedron (i7 i, , i,, is). is a DT (Theorem 3) and is a 
member of Tj. This tetrahedron is called an initial DT. Set Ti +- DT (i, i, ,1?, i, 1 and 
Ci+iJtlCi* 

Step 4& Construct the complete set of DT’s, Ti, starting from the initiat DT 
obtained in steps l-3. We shall explain this step in detail in the next section. 

Step 5, Evaluate geometrical quantities of II,, i.e., volume, surface area, etc. 

Repeat steps 1-S for all atoms i= l,.,., i Y, then the Voronoi tessellation is 
complete. Proofs of the theorems referred to here will be given in a later section. 

4. DETAILS OF STEP 4 

In Step 4 of the aIgorithm, the DT’s of T; are detected one after another by the 
elementary procedure which will be given below. The procedure utilizes the infor- 
mation about a certain DT of Ti obtained earlier, starting with the initial DT defined 
in Section 3, For each member i, of Ci, the detection of DT’s is continued until DT’s 
enclose the contiguous pair (it i,) without any gap. Step 4 ends when the DT’s 
connect all of the ~o~t~guo~s pairs ii, i, 1, i, E Ci. 

Elementary Process of Detecting a New DT 

Suppose a DT {i, i,, &, y i i \ is known as a member of Ti. Then, through the 
knowledge of this DT, we can obtain a new DT (i, i,, i,, ib} such that these two DT’s 
have the triangular face {i. i, 9 io) in common {see Fig. 2). 

~ei~ff~~ 3. The atoms iF and d, are located on opposite sides of the plane 
ti. i,, $1. 

Denote by Hj(afl 1)~) the half-space which is determined by the plane (i, i, , i,) and 
which does not contain iY, Further denote by S,(@ f 1~) the subset of Sj which is inside 
the half-space HJaj2 1 y>. Then (from Remark 3) the fourth vertex atom i, of the new 
DT is found from the set Si(~~ 1 y). 

In order to find i, just mentioned, we surround each atom j of S,(olp / y) with a 
sphere which circumscribes the atom j itself and the triplet (i, i, . i, 1. Then the atoms 
of Si(@ 1 y) are characterized by only one parameter. To see this. take the X and Y 
axes arb~tr~r~~y in the plane {& i a’ iB] and take as the positive direction of the Z axis 
the normal of this plane to the side of W[(ofl/ y). The Z-coordinate value of the center 
of the sphere attached to the atom j, as defined above, represents the position of atom 
j relative to the triplet (i, J,, iB}. 

From the above discussion and from the contiguity condition (see Remark Z), the 
fourth vertex atom i, of a new DT which we are seeking will have the smallest Z 
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FIG. 2. Two DT’s which have the triangular face {i. i, , i,) m common. 

value of the sphere center (not of the atom) among the atoms of S,(cQ / y) 
(Theorem 4). Figure 3 illustrates this circumstance. 

Thus, the elementary process of detecting a new DT is elucidated. Each time a new 
DT is obtained, it is added to the list of T,. As regards the fourth vertex atom of the 
new DT, it should be searched for in the list of Ci so far obtained and should be 
added to that list only if it is not yet contained in C,. 

Closing of DT’s around a Contiguous Pair (i, i, } 

According to the procedure described above, we detect DT’s sequentially in such a 
way that they have a contiguous pair (i, i, ) in common until the DT’s enclose the 
pair {i, i,} without any gap, where i, is any member in the list Ci so far obtained. 
Assume that a certain number of DT’s is already found around the pair {i, i,) and 
that the pair is not yet enclosed by DT’s (Fig. 4). Each triangle in Fig. 4 represents 
each DT which has the pair {i, i,} as a common edge. The pair is represented by a 
point in this figure as in Fig. 1. To indicate whether or not DT’s are constructed on 
both sides of a triangular face which meets the pair (i, i,) or, equivalently, whether 
the relevant face is completed or not, we assign to each face, (i, i,. io} say, a count 
index I,,. The index represents the number of constructed DT’s which have a relevant 
face in common. Therefore, if I,, = 2, the DT’s are constructed on both sides of the 
face (i, i,, io} and at that time the face is completed. In Fig. 4, for example, l,, = 1, 
1,,, = 2, and I,, = 1. Initially, each of the count indices is set to zero. At every stage of 
detecting a new DT, the count indices of relevant faces should be renewed. As an 
example, in Fig. 4, a new DT which is about to be detected is indicated by a triangle 
with dotted lines. When this DT is detected, i, being its fourth vertex, count indices 
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FIG. 3. Schematic diagram to show the elementary process of detecting a new DT. Horizontal line p 
m the figure indicates the XY plane. Two closed small circles on the line p represent atoms i, and i,. 
One of them should be thought to indicate the atom i itself. The closed small circle below the line p is 
the atom iy. Dashed circle corresponds to the circumsphere of DT {i, i,. is, iy}. Open half-plane above 
the line p corresponds to H,(aj3 1 v). Open small circles are the element atoms of S,(c$ ) y). Solid circles 
correspond to spheres which are attached to these atoms. In the figure, atom i, is a vertex of the new 
DT. 

1 L-& aO’ and Zos should be increased by one. If all of the count indices (1,. } of 
respective faces which meet the pair {i, i,} have the value 2, then the DT’s close the 
pair without any gap. At that time, an index m,, which is attached to the atom i, , is 
set equal to unity and the atom i, can be removed from the set Si because i, never 
appears again as a vertex of another DT. 

Closing of DT’s around the Central Atom i 

Applying the above procedures, we continue the detection of DT’s until m, = 1 is 
attained for all of the pairs (i, i,}, i, E Ci. By examining the list of Ci exhaustively, it 
can be determined when the set of detected DT’s, ri, encloses the atom i without any 
gap, or when the construction of ni is achieved. This is the stopping rule of step 4. 

As a summary of this section, let us itemize the substance of step 4 as follows: 

4.0. Clear {m,} and {1,,}. 
4.1. Set at 1. 
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FIG. 4. Schematic diagram of successive construction of DT’s. The closed circle represents the 
contiguous pair {i. i,}. This figure indicates the halfway stage of closing DT’s around the pair {i. i,, ). 

For details, see text. 

4.2. Pick out i, from C,. If the list of Ci is exhausted, go to step 5; otherwise go 
to step 4.3. 

4.3. If m, = 1, set (r t a + 1 and go to step 4.2; otherwise go to step 4.4. 

4.4. Find, in the list T, of existing DT’s, a DT (i. i,, i,, iy} which has the edge 
(i, i,) in common and for which I,, = 1. 

4.5. Set S,(a/3 1 y) t Sin Hi(a/3 ) y) and describe a circumsphere to each quartette 
(i,i,,i,,j},jESi(aPIY) and mj# 1. 

4.6. Set i, -j,i, for which the center of the circumsphere of the tetrahedron 
{i, i, , i, 3 j,i, } has the minimum Z-coordinate value, including its sign, among the 
circumspheres obtained in step 4.5. X and Y axes are taken arbitrarily in the plane 
(i, i,, io} and the Z axis is defined as the normal of this plane to the side of half- 
space ffi(aP I r>. 

4.7. Set TitDT (i,i,,i,,i,}UT,. If i,&C,, set Ci+idUCi. Set l,,+l,,+ 1, 
1 n6 t l,, + 1, and I,,, t I,, + 1. Set also l,, + l,, , l,, + l,, , and I,, + l,, . 

4.8. If all {I,. ) are equal to 2, set m, e 1. If all (1,. } and/or (1,. } are equal to 2, 
set m, c 1 and/or m, c 1. Then, go to step 4.3. 

Note that at the stage just before step 5 is entered, the sets T, and C, are 
completely obtained and that, therefore, 17, is constructed. 
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5. PROOF OF THE THEOREMS 

In this section, we present a proof of the theorems which are used in Sections 3 
and 4 and which are the basis of the present algorithm. We first state Theorems l-4 
explicitly: 

THEOREM 1. Let an atom i, be the nearest to an atom i. Then, i, and i are 
contiguous with each other. 

THEOREM 2. Consider a set of triangles (i, i,, j), j E Si and j # i, . Among them, 
suppose a triangle {i, i,, iz] has the minimum circumradius. Then, the triangle is a 
face of a certain DT, that is, the three atoms i, i,, and i, are mutually contiguous. 

THEOREM 3. Consider a set of tetrahedra {i, i, , i,, j), where j E S, and j # i, , iz. 
Among them, suppose a tetrahedron {i, i, , i,, i3) has the minimum circumradius. 
Then, the tetrahedron is a DT, that is, the four atoms i, i,, i,, and i, are mutual41 
contiguous. 

THEOREM 4. Let a DT (i, i, , is, iY) be an element of T,. Consider a set of 
tetrahedra {i, i, , i,, j), where j E Si(a/3 1 y). Among them, suppose the circumcenter of 
a tetrahedron (i, i a, is, i, ) has the minimum Z-coordinate value, where the coordinate 
Z of the circumcenter is defined as its distance to the plane (i, i, , is} and the sign of 
the coordinate is chosen so that the coordinate of i, is negative. Then, the tetrahedron 
is a DT, that is, the four atoms i, i, , i,, and i, are mutually contiguous. 

Theorem 1 seems to be obvious but appears not to be trivial. Most authors assume 
it to be clear without proof. Before entering the proof of these theorems, we show 
Lemmas l-3 as a preliminary: 

LEMMA 1. Let a point A be on a sphere 0 and a point B be outside 0. Then the 
center of the sphere 0 and its neighbourhood are on the same side as A with respect 
to the perpendicular bisecting plane of the segment AB (Fig. 5). 

Proof of Lemma 1. Generally a perpendicular bisector of a segment AB divides 
the whole space into two half-spaces; PA > PB holds for any point P in one of them 
and PA < PB for a point P in the other. Lemma 1 follows from the relation OA < OB 
and from the fact that the point 0 is never on the bisecting plane. Q.E.D. 

LEMMA 2. Let C be the intersection circle of two spheres 0 and 0’. Take a point 
P outside 0 and inside 0’. Let 0” be the sphere passing through P and the circle C. 
Then the center 0” lies on the segment 00’. 

Proof of Lemma 2. It is evident that the center 0” lies on the line 00’. Consider 
the plane containing three points 0, O’, and P (Fig. 6). The circles 0, 0’, and 0” are 
defined as the great circles of the corresponding spheres in the plane. Let A and B be 
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FIG. 5. See Lemma 1. 

two intersections of the three circles. The segment AB is a diameter of the circle C. 
For each of the three circles 0, 0’, and 0”, an arc AB is defined as the part of the 
circle in the half-plane which is determined by the line AB and does not contain P. 
Let Q and Q’ be the intersections of the line AP with the circles 0 and 0’. 
respectively. From the condition for the position of P, it follows that 

IAQ’B < LAPB < LAQB. 

Then, from the relation between angles at the center and the circumference of a circle 
standing on the same arc AB defined above 

LAO’B = ~LAQ’B, LAO”B = ~LAPB, and LAOB = 2iAQB. 

FIG. 6. See proof of Lemma 2. 
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and it follows that 

L AO’B < L AO”B < L AOB. 

Therefore 0” lies between 0 and 0’. Q.E.D. 

LEMMA 3. The intersection of two spheres 0 and 0’ is a great circle C of the 
sphere 0. Take a point P outside 0 and inside 0’. Let 0” be the sphere passing 
through P and the circle C. Then the radius of 0” is smaller than that of 0’ (Fig. I). 

Proof of Lemma 3. The situation is the special case of that in Lemma 2 where the 
center of 0 lies in the plane containing C. Then L AO’B < L AO”B < L AOB = 2 L R 
holds. By comparing two isosceles triangles O’AB and O”AB, it is concluded that 
AO” < AO’. Q.E.D. 

On the basis of Lemmas 1-3, we can proceed to the proofs of Theorems 1-4. 

Proof of Theorem 1. Let 0, be the sphere whose diameter is the segment (i, i, }. If 
atom j were inside 0,) j would be nearer to i than i, . Therefore 0, is empty. 
Lemma 1 says that the center 0, and its neighbourhood are never nearer to an atom 
outside 0, than to any of i and i,. Then the perpendicular bisector plane (i, i, } 
separates the neighbourhood of 0, into two Voronoi regions of i and i,. Therefore 
these two atoms are mutually contiguous. Q.E.D. 

Proof of Theorem 2. Let C be the circumcircle of the triangle (i. i, , iz). Let O2 be 
the sphere of which C is a great circle. The two spheres 0, and 0, intersect each 
other. As shown in the proof of Theorem 1, 0, is empty. If atom j were outside 0, 
and inside O,, the circumradius of the triangle (i, i, ,j) would be smaller than that of 
{i, i,, i2} according to Lemma 3. This contradicts the condition. Therefore 0, is 
empty. Lemma 1 says that the center O2 and its neighbourhood are never nearer to an 

FIG. 7. See Lemma 3. 



202 TANEMURA,OGAWA.A~DOGlTA 

atom outside 0, than to any of i, i,, and i,. Three perpendicular bisector planes 
(i, i,}, {i, i2}, and (i,, iz} meet at 0, and divide its neighbourhood into three Voronoi 
regions of i, i, , and i,. Therefore these three atoms are mutually contiguous. Q.E.D. 

Proof of theorem 3. Let 0, be the circumsphere of the tetrahedron {i, i, , i,, i, 1. 
Two spheres 0, and 0, intersect with each other. The sphere 0, is empty as shown 
in the proof of Theorem 2. If atom j were outside 0, and inside O,, the circumradius 
of the tetrahedron (i, i, , iz,j} would be smaller than that of (i, i,. i,, i,} according to 
Lemma 3. This contradicts the condition. Therefore 0, is empty. Lemma 1 says that 
the center 0, and its neighbourhood are never nearer to an atom outside 0, than to 
any of i, i,, i,, and i,. Then the tetrahedron (i, i,, i,. i, 1 is a DT. Q.E.D. 

Proof of Theorem 4. Let 0, be the circumsphere of the tetrahedron {i. i, , i,, iy}. 
Let 0, be the circumsphere of the tetrahedron (i, i,, i,, i6}. The intersection circle of 
the two spheres 0, and 0, is the circumcircle of the triangle {i, i,, i,}. The sphere 
O,, which is the circumsphere of a DT, is empty. If atom j were outside 0, and 
inside 0,, the circumcenter of the tetrahedron (i, i, , i,,j\ would lie between 0, and 
0, according to Lemma 2. In other words, it would have a smaller Z-coordinate 
value than 0,. This contradicts the condition. Then the sphere 0, is empty. Lemma 1 
says that the center 0, and its neighbourhood are never nearer to an atom outside 0, 
than to any of i, i, , i,, and i,. Therefore the tetrahedron (i, i,, i,,, i, 1 is a DT. 

Q.E.D. 

6. FURTHER DETAILS 

selection of Si 

In Section 3, we described how to find C,, T,, and then 17, for a given set S,. The 
efficiency of the algorithm depends on the selection of Si. The selection of too large 
an Si wastes computing time. Too small an Si (C, If S,) leads to a wrong 
construction of iii. The optimal choice of Sj depends on the type of configuration of 
atoms. 

Our interests are mainly concerned with the configuration of atoms in condensed 
phases, i.e., liquid, amorphous. and solid, and the coexistence of these. In such cases, 
the shape of Voronoi polyhedra is expected to be spherical. Then, S, is selected to be 
a set of the nearest N, atoms to x,. We take N, z 40 since the number of faces of 
polyhedra is empiricaly in the range 10-20. Taking the density fluctuation into 
account, we search the nearest N, atoms inside the sphere which contains about 2N, 
atoms on average. 

The check of whether this selection of S, leads to the correct construction of ZZ, is 
done in the following manner. Let di be the distance of the furthest vertex of ZZ, from 
atom i. Then, if the distance of the N, th atom from atom i is greater than 2d,, the 
construction of tZi is consistent. Otherwise we must increase N, for atom i until this 
condition is satisfied. 
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Our algorithm was designed originally to analyze the atomic configurations of a 
system confined in a cube, which are generated by computer experiment with a 
periodic boundary condition. Then the whole space is covered by replicas of the 
original cube and the extended system has translational symmetry. 

One is often interested in a system without such a feature, for example. a finite 
system in which all atoms are locaiized in some region of space. To apply our 
algorithm to this system we construct a cube which encloses the region. The effect of 
the periodic boundary condition appears only for Voronoi polyhedra in the region 
near the box surface. One can pick up such affected Voronoi polyhedra by 
examining, for the concerned atoms, whether or not the contiguous atoms are in the 
original box, or by inspecting the shape or size of their Voronoi polyhedra. 

Degenerate Case 

If five or more atoms happen to be on a spherical surface and if this sphere is 
empty, then this corresponds to a degenerate case mentioned in Section 2. In this 
case, the Voronoi tessellation is also unique, although Voronoi polyhedra of the five 
or more atoms meet at the center of this sphere. Some of these polyhedra are not 
normal in the following sense: four or more faces meet at a vertex. In the 
nondegenerate case, three faces meet at every vertex of any Voronoi polyhedron, 
which we call a normal polyhedron. The Delaunay tessellation for the degenerate 
case is different from that for a nondegenerate case: a certain polyhedron other than 
tetrahedron appears, which is inscribed in the above mentioned sphere. Any division 
of this polyhedron into tetrahedra leads to a Delaunay tessellation by tetrahedra 
alone, thus the “tetrahedral” Delaunay tessellation is not unique in a degenerate case. 

Our algorithm gives a consistent set Ti of DT for 27, in this case, because we 
search DT’s sequentially so that any additional DT has a face in common with a 
previously found DT. Therefore, our algorithm gives a correct Voronoi tessellation. 

Removal of Degeneracy 

There is another treatment of the degenerate case. The degeneracy is removed if 
only a small amount of displacement is given to the atoms which are members of the 
degenerate set. Then there remains no ambiguity in the Delaunay tessellation, the 
Voronoi tessellation in the concerned region changes, and all the Voronoi polyhedra 
are normal, 

Different displacements from one degenerate configuration lead to different 
Voronoi tessellations. For example, the Voronoi polyhedra for a regular FCC lattice 
are rhombic dodecahedra in which degeneracy takes place at six vertices among 
fourteen. If the atoms are randomly displaced, the rhombic dodecahedra change into 
various kinds of polyhedra and the crystalline order is difficult to see. If the system of 
atoms is compressed along the (1 0 0) axis, the degeneracy is removed and all the 
Voronoi polyhedra are tetrakaidecahedra, as for a BCC lattice [ 7 1. 

Our program has two options: treatment by random displacements and by 
compression along the (1 0 0) axis. 
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Dvnamical Problems and Degeneracy 

Though degeneracy happens very rarely in a given static configuration, it takes 
place not only in regular lattices but also in dynamical problems of atomic systems. 
From a dynamical point of view, the Voronoi tessellation changes only through an 
instantaneous degenerate configuration. Then the degeneracy is not a trivial excep- 
tional case. A detailed study of degenerate cases yields a classification of 
configurations in terms of Voronoi tessellation (Ogawa 19 1). 

7. EFFICIENCY OF THE ALGORITHM 

In order to compare the efftciency of our algorithm with other algorithms, we 
prepared two programs; one is that of Finney [4] and the other is that of Brostow et 
al. 13 1. The former is easy to program because of the simple structure of the 
algorithm. The latter is available to us from the authors by request. We evaluated the 
mean execution time for construction of a single polyhedron for the same 
configurations of N = 500. Figure 8 shows the results for several values of N,. It is 

P 

FIG. 8. Estimated computing time per Voronoi polyhedron against several values of N,. The symbol 
(0) corresponds to ours. (0) to Brostow et al., (A) to Finney. Values for Finney’s algorithm are 0.075. 
1.591, 7.007, and 14.163 for N, = 20, 50, 80, and 100, respectively. Values for our algorithm and that of 
Brostow et al. are given in Tables I and II. The configuration used for these estimations IS that of a 
metastable liquid with density p = N/Y = I. 10 and N = 500. See (7 j for detads. 
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evident that our aIgorithm is fairly efficient when compared to the other two 
algorithms. In the figure, for the algorithm of Brostow et al. [3], the dependence of 
computing time on N, is nearly as small as ours. It is also obvious that Finney’s 
algorithm is generally much less efficient. 

Let us analyse the dependence on N, for each algorithm. Our algorithm starts with 
constructing an initial DT on the basis of Theorems l-3. The number of operations 
to get the initial DT is proportional to N, (steps 1-3 in Section 3). In step 4, we 
detect another atom as the fourth vertex of a new DT for a fixed bottom triangle and 
the condition is examined at most N, times. The algorithm is to find DT’s sequen- 
tially. Then the number of computations to obtain the complete set Ti and the 
Voronoi polyhedron fli of atom i is approximately vNX, where c’ is the number of 
vertices of ni, i.e., the number of DT’s in Ti. The ~ompu~ing time for each step is 
presented in Table I. 

Finney’s algorithm constructs DT’s as we do. However, his program constructs 
tetrahedra for all the possible sets of three atoms among N,$ atoms, together with the 
central atom. The number of sets is N,C3. Only a tetrahedron whose circumsphere is 
empty is a DT. To distinguish a DT from the others, cNs computations are required 
on the average, where c (< 1) is a positive numerical factor. Then the computation 
time is proportional to Nz. 

The algorithm by Brostow et al. consists of the following three steps: (I) finding a 
set of direct neighbors (FACFIN), (II) constructing a polyhedron from the set 
(DIRPOL), and (III) constructing the Voronoi polyhedron (VORPOL). In (I), 
whether an atom can be a direct neighbour or not is judged by simply checking the 

TABLE I 

Composition of Computing Time per Voronoi Polyhedron for Our Algorithm 

NT 

20 

Selection of S, Step 2 
and Step I and Step 3 

0.00176 0.00324 
(18.590) (34.1%) 

Step 4 
- 

0.00450 
(47.4%) 

Total 
..___ 
0.00950 

Step 5 

0.00182 

50 0.~238 0.~442 O&o763 0.01443 0.00182 
(16.5%) (30.6%) (52.9%) 

80 0.00365 0.005 70 0.01072 0.02007 0.00183 
(18.2%) (28.4%) (53.4%) 

100 0.00807 0.00675 0.01312 0.02794 0.00189 
(28.9Yo) (24.2 %) (46.9?0) 

Note. The unit of computing time is given in seconds. For the meaning of each step. see Section 3. 
The values in the last column “Step 5” are the same for all algorithms and “total” does not include the 
time of Step 5. 

581/51/2-2 
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TABLE11 

Composition of Computing Time per Voronoi Polyhedron 
for the Algorithm by Brostow ef al. 

N, 

20 

Selection of S, 
and Step (I) 

0.00388 
(2.7%) 

Step (II) 

0.10606 
(72.6%) 

Step (III) 

0.036 10 
(24.7%) 

Total 

0.14604 

50 0.00602 0.10497 0.03591 0.14690 
(4.1 “0) (71.5%) (24.4%) 

80 0.00755 0.10465 0.0359 I 0.14801 
(5.1%) (70.7%) (24.2%) 

100 0.01109 0.10452 0.03585 0.15146 
(7.31%) (69.0%) (23.7%) 

Note. For the meaning of each step, see text. 

sign of a linear function. If the number of the direct neighbours is f,, the number of 
conditions to be checked is approximately (j)fdN1. In (II), 2f, - 4 vertices of the 
direct polyhedron are determined only afterfi/6 examinations. In (III), the procedure 
to find the contiguous atoms among the other N, -f, atoms requires about 
(f+fd - 4) . (N, -fd) examinations, where f is the number of faces of II,. Whenever 
a new candidate for a contiguous atom is found, the new vertices are calculated to 
prepare the examinations for the other succeeding atoms. Sometimes the candidates 
may turn out not to be contiguous afterwards. After all these procedures, the Voronoi 
polyhedron is determined. Though step (I) is simple and short, (II) and (III) are 
rather long. The computing time for each step is presented in Table II. 

Our procedure is always based on the fact that some atoms are surely contiguous. 
We always detect only one atom at every step. Well-established theorems enable us to 
avoid the repeated computations proportional to N: where n > 2. That is the reason 
why our algorithm is more elficient than others. All of the computations for the 
estimation of computing time were done on a HITAC M-200H of the Institute of 
Statistical Mathematics. Our program requires about 1300 FORTRAN statements, 
including I/O statements and comments. The amount of storage necessary for this is 
300 kilobytes, for which systems of up to 4000 atoms are adaptive. 

8. POSSIBLE IMPROVEMENT AND A GENERALIZATION 

In the present algorithm, each Voronoi polyhedron is independently constructed. 
Therefore, strictly speaking, it is not an algorithm for computing the Voronoi 
tessellation itself but for repeated construction of a single Voronoi polyhedron. This 
repetition can be avoided by registering information about a Voronoi polyhedron at 
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the first construction and by utilizing it later. The total number of DT’s is 
(f/2-l)N<7Nifth e average number of faces of a Voronoi polyhedron is fin an 
N-atom system and if the modest estimationf< 16 is used. If all atoms concerning a 
DT are registered, the total number of the required memory is (Zf- 4)N < 28N. The 
computing time will be reduced to less than one fourth, since the construction of an 
initial DT need be done only once and since its construction takes more computing 
time than that of another DT (see Table I). The algorithm now involves only 
computing the Voronoi tessellation. 

This improvement is a natural extention of the algorithm. In the present algorithm, 
the guiding principle of closing a polyhedron is that each triangular face of the DT’s 
that contain the central atom as their common vertex is used twice. In the improved 
algorithm, the Voronoi tessellation is complete when and only when all DT’s are used 
four times. 

From another point of view, the construction of a Voronoi polyhedron can be 
regarded as a tessellation of a closed surface into triangles. The tetrahedral DT 
tessellation of a space, which is in one-to-one correspondence with a Voronoi 
tessellation, can be regarded as a tessellation of a closed three-dimensional hyper- 
surface of a four-dimensional region into tetrahedra when periodic boundary 
conditions are imposed. It means that the algorithm can be very naturally extended 
for any dimension and the number of required computations is always proportional to 
N,, irrespective of the dimensionality. 
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